MMU Home | Prospectus | About MMU | A-Z Index | Contacts 

mmuch more
Collection All
Listed communities

espace at MMU > Research Institutes > Institute for Biomedical Research into Human Movement and Health > Institute for Biomedical Research into Human Movement and Health > Muscle tissue oxygenation and VEGF in VO2-matched vibration and squatting exercise

Please use this identifier to cite or link to this item:     LinkedIn     Citeulike     Connotea     Facebook     Stumble it!

SFX Query

Title: Muscle tissue oxygenation and VEGF in VO2-matched vibration and squatting exercise
Authors: Rittweger, Jörn
Moss, Andrew D.
Colier, Willy
Stewart, Claire E.
Degens, Hans
Citation: Clinical Physiology and Functional Imaging, 2010, vol. 30, no. 4, pp. 269-278
Publisher: Wiley-Blackwell Publishing Ltd.
Issue Date: 2010
DOI: 10.1111/j.1475-097X.2010.00937.x
Additional Links:
Abstract: Exposure to vibration has traditionally been associated with compromised perfusion. This study investigated whether blood supply during whole body vibration (WBV), as an exercise modality, is in proportion to the metabolic demand by the contracting musculature. As a secondary aim, serum levels of vascular endothelial growth factor (VEGF) were assessed. Ten young healthy males performed WBV and dynamic shallow squatting (Squat) exercise at comparable levels of oxygen uptake for 3 min. Changes in oxygenated, deoxygenated and total haemoglobin (O2Hb, HHb and tHb, respectively) along with tissue oxygenation index (TOI) were measured continuously before, during and after the exercise by near-infrared spectroscopy (NIRS, Portamon, Artinis Medical Systems, Zetten, The Netherlands). Vascular endothelial growth factor-A blood levels before and after exercise were assessed by ELISA. Oxygen uptake was comparable in Squat and WBV (11·4 and 10·7 ml kg−1 min−1), respectively, P = 0·49), as were all other cardiopulmonary variables. Near-infrared spectroscopy data were found to be non-stationary during and shortly after WBV, but stationary in Squat. There was an increase in O2Hb and TOI, and a decrease in HHb during the first 30 s of WBV, but no significant change was observed during Squat. No group difference was found in VEGF serum levels. These results suggest that oxygen supply during WBV is sufficient, and oxygenation is even enhanced during the first approximately 30 s. Most likely, the transient response is because of local vascular regulatory mechanisms and due to muscle contraction mechanics. This might become clinically relevant under pathological conditions, e.g. in vascular disorders.
Type: Article
Language: en
Description: Full-text of this article is not available in this e-prints service. This article was originally published following peer-review in Clinical Physiology and Functional Imaging, published by and copyright Wiley-Blackwell Publishing Ltd..
Keywords: Angiogenesis
Near infrared spectroscopy
Vascular endothelial growth factor
Whole body vibration
ISSN: 1475-0961
Appears in Collections: Institute for Biomedical Research into Human Movement and Health

Files in This Item:

There are no files associated with this item.

All Items in e-space are protected by copyright, with all rights reserved, unless otherwise indicated.


OR Logo Powered by Open Repository | Cookies
Valid XHTML 1.0!